Human Deciduous Teeth Stem Cells (SHED) Display Neural Crest Signature Characters
نویسندگان
چکیده
Human dental tissues are sources of neural crest origin multipotent stem cells whose regenerative potential is a focus of extensive studies. Rational programming of clinical applications requires a more detailed knowledge of the characters inherited from neural crest. Investigation of neural crest cells generated from human pluripotent stem cells provided opportunity for their comparison with the postnatal dental cells. The purpose of this study was to investigate the role of the culture conditions in the expression by dental cells of neural crest characters. The results of the study demonstrate that specific neural crest cells requirements, serum-free, active WNT signaling and inactive SMAD 2/3, are needed for the activity of the neural crest characters in dental cells. Specifically, the decreasing concentration of fetal bovine serum (FBS) from regularly used for dental cells 10% to 2% and below, or using serum-free medium, led to emergence of a subset of epithelial-like cells expressing the two key neural crest markers, p75 and HNK-1. Further, the serum-free medium supplemented with neural crest signaling requirements (WNT inducer BIO and TGF-β inhibitor REPSOX), induced epithelial-like phenotype, upregulated the p75, Sox10 and E-Cadherin and downregulated the mesenchymal genes (SNAIL1, ZEB1, TWIST). An expansion medium containing 2% FBS allowed to obtain an epithelial/mesenchymal SHED population showing high proliferation, clonogenic, multi-lineage differentiation capacities. Future experiments will be required to determine the effects of these features on regenerative potential of this novel SHED population.
منابع مشابه
Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells.
Stem cells from human exfoliated deciduous teeth (SHED) have been identified as a novel population of postnatal stem cells capable of differentiating into neural cells, odontogenic cells, and adipocytes. SHED were reported to differentiate into neural cells based on cellular morphology and the expression of early neuronal markers when cultured under neural inductive conditions. This study there...
متن کاملStem Cells from Human Exfoliated Deciduous Tooth Exhibit Stromal-Derived Inducing Activity and Lead to Generation of Neural Crest Cells from Human Embryonic Stem Cells
OBJECTIVE The neural crest is a transient structure of early vertebrate embryos that generates neural crest cells (NCCs). These cells can migrate throughout the body and produce a diverse array of mature tissue types. Due to the ethical and technical problems surrounding the isolation of these early human embryo cells, researchers have focused on in vitro studies to produce NCCs and increase th...
متن کاملTransplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model.
Regarding both the neural crest origin and neuronal potential of stem cells from human exfoliated deciduous teeth (SHED), here, we assessed their potential in addition to neural induced SHED (iSHED) for functional recovery when transplanted in a rat model for acute contused spinal cord injury (SCI). Following transplantation, a significant functional recovery was observed in both groups relativ...
متن کاملتاثیر Chitosan بر ویژگیهای استئوژنیک سلولهای بنیادی مزانشیمال پالپ دندان شیری
Background and Aims: The exfoliated human deciduous tooth contains multipotent stem cells [Stem Cell from Human Exfoliated Deciduous tooth (SHED)] that identified to be a population of highly proliferative and clonogenic. These cells are capable of differentiating into a variety of cell types including osteoblast/osteocyte, adiopcyte, chondrocyte and neural cell. The aim of this study was to ev...
متن کاملStem Cells of the Dental Pulp
Dental Pulp Stem Cells (DPSCs) can be found within the cell rich zone of dental pulp. These stem cells, under specific stimuli, differentiate into many cell types which have wide therapeutic applications. The dental stem cells are derived from both deciduous and permanent teeth. The viable dental stem cells are very simple to collect, without any mortality and morbidity. Dental pulp stem c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017